HANOI UNIVERSITY OF TECHNOLOGY FACULTY OF ELECTRONICS AND TELECOMMUNICATIONS

BACHELOR DEGREE IN ELECTRONICS AND TELECOMMUNICATIONS CURRICULUM

CONTENTS

1	PROGR	AM DURATION AND NUMBER OF CREDITS	
2	GRADIN	NG SYSTEM	
3	PROGR	AM CONTENT	4
	3.1 Pro	GRAM STRUCTURE	
	3.1.1	General structure	
	3.1.2	Program tree	
	3.2 Cou	JRSE LIST	5
	3.2.1	Common courses for engineering	
	3.2.2	Electronics and Telecommunication engineering course list	
	3.2.3	Special course list for Hannover's program	
4	COURS	E DESCRIPTION	
	MI1110	Math I	
	MI1120	Math II	
	MI1130	Math III	
	MI1140	Algebra	
	PH1110	Physics I	
	PH1120	Physics II	
	EM1010	Introduction to management	
	IT1110	Introduction to informatics	
	PH1130	Physics III	9
	PH1204	Electronic physics	
	ET1000	Introduction to electronics and telecommunication engineering	
	HE2010	Thermal engineering	
	ME2026	Technical drawing	9
	EE2012	Fundamental of electrical engineering	
	ET2020	Introductory laboratory	
	ET2030	Programming language	10
	ET2040	Electronic devices	10
	ET2070	Circuit theory	
	ET2050	Signals and systems	
	ET2000	Information theory	
	ET2070	Fundamental of measurement techniques	
	ET2000	Flectromagnetic field theory	
	ET3210	Digital Flectronics	
	ET3220	Analog electronics I	
	EF3349	Automation and control theory	
	ET3260	Annlied software engineering	
	ET3250	Digital communications	
	ET3230 ET3240	Analog electronics II	
	ET3240 ET3280	Propagation and antennas	
	ET3200	Design project I	
	ET3290	Micronvocassors	
	E13300 FT4010	Design project II	
	ET2070	Design project 11 Internshin	
	E13270 ET4030	Internetup	
	E14020 ET4020	Digital system design and synthesis	
	E14030 ET4250	Communication systems	
	E14230 ET4040	Communication systems	
	E14040	Computer organization and architectures	

ET4050	Computer networks	
ET4060	Object oriented system analysis and design	14
ET4070	Fundamentals of communication networks	
ET4080	Communication networks	
ET4240	Radio Communications	
PH4070	Microelectronics	
ET4160	Biomedical electronics	
ET4270	Television	
ET4260	Multimedia	
<i>ET4340</i>	VLSI design	
ET4090	Microwave engineering	
xxxxxx	German for electronic and communication engineers	
ET4180	Biomedical material	
ET4900	Graduation project	

Undergraduate Program

Program title:	Bachelor degree in Electronics and Telecommunications
Major:	Electronics and Telecommunication Engineering
Degree:	Bachelor degree in Engineering

1 Program duration and number of credits

- Program duration: 4 years (8 semesters).
- Total number of credits: 132 credits

2 Grading system

	10	point	syst	em	4 point system					
					grade	points				
	from	9,5	to	10	A+	4,5				
	from	8,5	to	9,4	А	4,0				
	from	8,0	to	8,4	B+	3,5				
Pass grade	from	7,0	to	7,9	В	3,0				
	from	6,5	to	6,9	C+	2,5				
	from	5,5	to	6,4	С	2,0				
	from	5,0	to	5,4	D+	1,5				
	from	4,0	to	4,9	D	1.0				
Fail grade < 4,0				F	0					

3 Program content

3.1 Program structure

3.1.1 General structure

3.1.2 Program tree

Bachelor Program in Electronics and Telecommunications

3.2 Course list

3.2.1 Common courses for engineering

Nr	Code Name of Courses	Nr of	Standard course sequence (semester)									
			Credits	1	2	3	4	5	6	7	8	
Poli	tics		10 credits									
1	SSH1110	Marcism I	2(2-1-0-4)	2								
2	SSH1120	Marcism II	3(3-0-0-6)		3							
3	SSH1050	Hồ Chí Minh thoughts	2(2-0-0-4)			2						
4	SSH1130	Politics	3(3-0-0-6)				3					
Physical education			(5 credits)									
5	PE1010	Physical education A	1(0-0-2-0)	Х								
6	PE1020	Physical education B	1(0-0-2-0)		Х							
7	PE1030	Physical education C	1(0-0-2-0)			х						
8	PE2010	Physical education D	1(0-0-2-0)				Х					
9	PE2020	Physical education E	1(0-0-2-0)					х				
Milit	tary servic	e training	(8 credits)									
10	MIL1110	Military service training A	3(3-0-0-6)	Х								
11	MIL1120	Military service training B	3(3-0-0-6)		Х							
12	MIL1130	Military service training C	4(3-1-1-8)			Х						
Eng	lish		6 credits									
13	FL1101	TOEIC I	3(0-6-0-6)	3								

6

14	FL1102	TOEIC II	3(0-6-0-6)		3				
Mat	hs and bas	28 credits							
15	MI1110	Math I	4(3-2-0-8)	4					
16	MI1120	Math II	3(2-2-0-6)		3				
17	MI1130	Math III	3(2-2-0-6)		3				
17	MI1140	Algebra	4(3-2-0-8)	4					
18	PH1110	Physics I	3(2-1-1-6)	3					
19	PH1120	Physics II	3(2-1-1-6)		3				
20	EM1010	Introduction to management	2(2-0-0-4)		2				
21	IT1110	Introduction to informatics	4(3-1-1-8)			4			
22	HE2010	Thermal Engineering	2(2-0-0-4)		2				
		Tota	44 credits	16	17	6	3		

Note:

- 1) English requirements: students that have TOEIC certificate above 290 points are exempted from FL1101, above 330 are exempted from FL1102. Before doing the final thesis, students should have TOEIC certificate above 330 points.
- 2) For politics, physical education and military subjects: Students will have specific certificates that are not counted into the total number of credits.

8

Nr	Code	Name of Courses	Nr of		Standard course sequence (semester)									
			Cieuits	1	2	3	4	5	6	7				
Sup	plementar	y Maths and Basic Sciences	8 credits											
1a	PH1130*	Physics III	3(2-1-1-6)			3								

3.2.2 Electronics and Telecommunication engineering course list

Jup	piementai	y Maths and Dasic Sciences	0 creatts						
1a	PH1130*	Physics III	3(2-1-1-6)		3				
1b	PH1204*	Electronic physics	2(2-1-0-4)		2				
2	MI2020	Probability and statistics	3(2-2-0-6)		3				
3	ME2026	Technical drawing	2(2-1-0-4)		2				
Cor	e Courses	and Specialized Engineering	54 gradite						
Cοι	irses		J4 creats						
4	EE2012	Fundamental of electrical engineering	2(2-0-1-4)		2				
5	FT2000	Introduction to electronics and	2(2-0-1-4)		2				
5	E12000	telecommunication engineering	2(2-0-1-4)		2				
6	ET2020	Introductory Laboratory	3(0-0-6-0)		3				
7	ET2030	Programming language	3(3-0-1-6)			3			
8	ET2040	Electronic devices	3(3-0-1-6)			3			
9	ET2050	Circuit theory	3(3-0-1-6)			3			
10	ET2060	Signals and systems	3(3-1-0-6)			3			
11	ET2070	Information theory	2(2-0-1-4)			2			
12	FT2080	Fundamental of measurement	2(2-0-1-4)	, ,		2			
12	112000	techniques	2(2 0 1 1)			-			
13	ET3210	Electromagnetic field theory	3(3-0-1-6)				3		
14	ET3220	Digital Electronics	3(3-0-1-6)				3		
15	ET3230	Analog Electronics I	3(3-0-1-6)				3		
16	EE3349	Automation and Control Theory	4(3-2-0-6)				4		
17	ET3260	Applied software engineering	2(2-1-0-4)				2		
18	ET3250	Digital communications	3(3-0-1-6)					3	
19	ET3240	Analog electronics II	3(3-0-1-6)					3	
20	ET3280	Propagation and Antennas	2(2-1-0-4)					2	
21	ET3290	Design project I	2(0-0-4-4)					2	
							•		

22	ET3300	Microprocessors	3(3-1-0-6)					3		
23	ET4010	Design project II	2(0-0-4-4)						2	
24	ET3270	Internship	2(0-0-6-4)						2	
Elec	ctive Areas	of Concentration	18 credits							
	Electr	onics and Computer Engineering								
1	ET4020	Digital signal processing	3(3-0-1-6)							
2	ET4030	Digital system design and synthesis	3(3-1-0-6)							
3	ET4250	Communication systems	3(3-1-0-6)							
4	ET4040	Computer organization and architectures	3(3-0-1-6)							
5	ET4050	Computer networks	3(3-0-1-6)							
6	ET4060	Object oriented system analysis and design	3(3-1-0-6)							
	Comm	nunications Engineering								
1	ET4020	Digital signal processing	3(3-0-1-6)							
2	ET4030	Digital system design and synthesis	3(3-1-0-6)							
3	ET4250	Communication systems	3(3-1-0-6)							
4	ET4070	Fundamental of data communications	3(3-1-0-6)						3	
5	ET4080	Communication networks	3(3-0-1-6)							3
6	ET4240	Radio communications	3(3-1-0-6)							
	Free e	\geq 2 credits								
1	PH4070	Microelectronics	2(2-1-0-4)							
2	ET4160	Biomedical electronics	2(2-1-0-4)							
3	ET4270	Television	2(2-1-0-4)							
4	ET4260	Multimedia	2(2-1-0-4)							
5	ET4340	VLSI design	3(3-1-0-6)							
6	ET4090	Microwave engineering	3(3-1-0-6)							
7	*****	German for electronic and communication engineers	2(2-1-0-4)			2				
8	ET4180	Biomedical material	3(3-1-0-6)							
1	ET4900	Gradution project	6(0-0-12- 12)							6
		Total	90 credits	0	0					

* Students can select PH1130 or PH1204

3.2.3 Special course list for Hannover's program

	1	xxxxxx	German as foreign language**	80 credits	6	6	8	8	8	8	8	8
--	---	--------	------------------------------	------------	---	---	---	---	---	---	---	---

^{**}In additional to the above listed subjects, students attending the joint bachelor program with Leibniz-Universitaet Hannover should visit special German courses from the 1st – 8th semester.

- The total number of credits: 80.
- Students who want to study at LUH should pass TestDAF 4x3.
- 80 credits of German are not counted into the total required 132 credits for Bachelor degree at HUT.

4 Course description

MI1110 Math I

4(3-2-0-8)

Content: Differentiation and integration of one variable functions and multi-variable functions

MI1120 Math II

3(2-2-0-6)

Content: Line integrals, surface integral, differential geometry, field theory.

MI1130 Math III

3(2-2-0-6)

Content: series theory and series function, second order and third order differential equations and system of differential equations.

MI1140 Algebra

4(3-2-0-8)

Content: logic, sets, mapping, complex numbers. Vector space structure. Theory of matrices, the system of linear equations. linear mapping and Euclidean space.

PH1110 Physics I

3(2-1-1-6)

Content: Basic physical laws such as momentum, the theorems and laws of momentum; the theorem and laws of the moment; kinetic energy, potential, the law of conservation of energy. The movement of solid objects, vibrations and waves. Using theory of molecular dynamics to calculate: temperature, pressure, internal energy (ideal gas). Manipulate the law of conservation and metabolism of energy in the process of heat transfer.

PH1120 Physics II

3(2-1-1-6)

Content: Electric field, magnetic field; the properties (intensity, voltage ..) and the related laws and theorem. Relationship between field and matters. The relationship between magnetic and electric field, electromagnetic field. Electromagnetic waves and oscillations.

EM1010 Introduction to management

2(2-0-0-4)

Content:

IT1110 Introduction to informatics

4(3-1-1-8)

Content: Information representation in computers. Computer systems. Linux OS; C programming language: introduction to C, data types, C statements and basic structrures. Complex datat types: pointer, array and string in C. Struct. Files.

PH1130 Physics III

3(2-1-1-6)

Content: particle and wave properties of light: interference, diffraction, polarization, heat radiation, Compton phenomenon. Particle-wave properties of elementary particles (electron, atom, etc.). Quantum mechanics, Schrodinger equations. Spin theory and Pauli principle. Semiconductor: p, n, p-n. Transistor. Laser effect. Special and general theories of relativity. $E = mc^2$ equation and its applications.

PH1204 Electronic physics

2(2-1-0-4)

Content: Review of quantum mechanics applied to solid-state physics, energy band theory, carrier generation and transport. Review of semiconductor process technology. Nanotechnology and related basic physics concepts. PN junction diode; diode fabrication, nanofabrication and characterization, pn junction at equilibrium, steady state, and transient behavior. Metal semiconductor junction, Schottky barrier, and Ohmic behavior. Metal-Oxide-Semiconductor (MOS) Field-Effect-Transistor: MOS capacitor, field effect, NMOS, PMOS, CMOS, current-voltage characteristics, and switching. Nanoelectronic devices, single electron device. Bipolar junction transistor: carrier transport in pnp/npn structure, amplification, current-voltage characteristics, and switching.

ET1000 Introduction to electronics and telecommunication engineering

3(2-0-2-6)

Content: What is electrical and computer engineering? Different specializations in ECE. Basic concepts and components in ECE. ECE engineering tools. Engineering problem solving.

HE2010 Thermal engineering

2(2-0-0-4)

Content: Thermodynamics engineering: basics notations, working substances and defining the states of working substance, basic thermodynamic processes, thermodynamic cycles. Thermo transfer: thermal transmission, thermal convection, thermal radiation.

ME2026 Technical drawing

2(2-1-0-4)

Content: Conception about designing, manufacturing, assembling the industrial machines, representative figure of the machine elements, assembly drawing of the machine mechanism: Content – Reading the assembly drawing, of the machine mechanism, conception about Auto-CAD.

EE2012 Fundamental of electrical engineering

2(2-0-1-4)

Content: Electrical circuit: basic concepts of electrical circuits; sinusoid current; methods for electrical circuit analysis; three-phase current. Electrical machines: general concepts; transformer; asynchronous motors; synchronous electrical machines; direct current electrical machines.

ET2020 Introductory laboratory

3(0-0-6-0)

Content:

This course will provide students with a general exposure to electronic circuits laboratory equipment, measurement techniques, and basic laboratory safety. Topics covered:

- Series and parallel circuits
- d'Arsonval meter

10

- Electronic digital multimeter
- Thevenin and Norton equivalent circuits
- Analog cathode ray oscilloscope
- Digital cathode ray oscilloscope

ET2030 Programming language

3(3-0-1-6)

Content: The basic concepts of programming (the historical development and classification of programming languages, the major components of a programming language. Etc), C programming language (general structure of the program C, the title and keywords, data types, pointers, operators, Control structrures for the program, function ...), C + + programming language (class structure, inheritance, virtual functions and friend function, stream and file, templates, algorithms, object function...), the basic data structures (lists, queues, binary tree ...)

ET2040 Electronic devices

3(3-0-1-6)

Content:

- Materials: dielectric, semiconductor, magnetic.
- Passive devices: resistor, capacitor, inductor.
- Active devices: structure and operation of diode, BJT, FET, thyristor, four-layer diode, silicon cotrolled rectifier, bidirectional thyristor, unijunction transistor.
- Analog and digital IC: fundamental and application.
- Opto electronics introduction.
- Display devices.

ET2050 Circuit theory

3(3-0-1-6)

Content: The basic concept of linear circuits and common methods for circuit analysis - Kirchhoff's laws, node voltage. RL, RLC, RC circuits. Bode plots. Two port circuit applications. Reciprocal and non reciprocal 2 port circuits. Passive and active circuits synthesis.

ET2060 Signals and systems

3(3-1-0-6)

Content: Mathematical methods used to describe signals and linear systems. Laplace Transform and its applications. Fourier Series. Fourier Transform and its applications. Fast Fourier Transform. Frequency Response and Filter. Sampling and Construction. Z Transform.

ET2070 Information theory

2(2-0-1-4)

Content:

- Information theory introduction: basic concepts, entropy, source encoding, channel encoding, encryption, Shannon theory.
- Random signal and noise: signal and spectrum, Fourier transform, base band, band pass, band limited, bandwidth
- Modulation: AM, FM, PM, Pulse modulation, delta modulation.
- Transfer function

ET2080 Fundamental of measurement techniques

2(2-0-1-4)

Content:

- Measurement theory: introduction, error causes, error estimation, measurement results determination methods
- Oscilloscope: principle, structure: one or more channel, digital oscilloscope
- Measurement: voltage, current, impedance, power, frequency, interval, phase
- Modulation parameters measurement, spectrum analysis
- Circuit parameters and quality measurement
- Digital circuits and microprocessor measurement
- Automatic measurement introduction

ET3210 Electromagnetic field theory

3(3-0-1-6)

Content: This course will cover concepts of electrostatics and static magnetic fields. In the beginning, vector algebra and calculus together with orthogonal coordinate systems will be discussed. Next, the time-varying electromagnetic fields described by Maxwell's Equations in their complete forms are studied. Electromagnetic wave propagation will be covered.

ET3220 Digital Electronics

3(3-0-1-6)

Content: Basic concepts: Number systems and data representation, Boolean algebra, basic logic gates, manufacturing technology (TTL, CMOS, ...); Design of combinational logic circuits: Karnaugh map, Quine McClusky, hazard, the basic RTL building blocks (encoder, decoder, ALU, MUX, DEMUX, Adder ...). Design sequential logic circuits: flip-flop types, FSM (Moore, Mealy), the basic RTL building blocks (register, shift registers, counters, queues, register files ...); RTL design: FSMD (FSM with Datapath); CAD: the programmable chip (PAL, PLA, CPLD, FPGA)

ET3230 Analog electronics I

3(3-0-1-6)

Content:

- Introduction: basic parameters, 2-ports system, amplifier parameters transfer function and frequency respond
- Feedback: concept, connection types, effects on amplifier's parameters
- Small signal amplifier: BJT and FET: stage, bias, AC and DC mode, configuration, model: hybrid and transconductance, stage coupling
- Frequency response: zero and pole point, miller capacitor, low and high frequency response of BJT/ FET amplifier, frequency response of multi stages amplifier
- Resonant and broadband amplifier
- Power amplifer: class A, B, C, D, methods to improve circuit characters, practical devices and circuits
- Operational amplifiers: introductions, parameters, structure
- Op amp applications: inverter, noninvert, adder, subtractor, integrator, differenciator, clipper rectifier, comparator

EE3349 Automation and control theory

3(3-2-0-6)

Content: Control of LTI systems and introduction in nonlinear control systems

- Signal and classification of signals: Continuous, discontinuous and digital.
- Modelling of electrical and mechanical systems. Presentation in frequency and in time domain. Linearization. Transfer functions and state modele of linear systems. Algebra of block diagram. Normal form. Minimum order modele.

- Analysis of continuous LTI systems in frequency domain: stability (Routh, Hurwitz, Michailov, Nyquist), robustly (Kharitonov, Nyquist, Bode diagram), minimum phase, uncertainty and sensivity function...
- Controller design for continuous LTI systems in frequency domain: PID, root locus, Youla factorization, modele matching (modele compensation), robust controller, Wiener filter ...
- Analysis of continuous LTI systems in time domain: stability, controllability, observability, zero dynamic ...
- Controller design for continuous LTI systems in time domain: Pole placement by state feedback, observer synthese and observer based control by output feedback (separation theorem), tracking control, LQR and LQG controller ...
- Analysis of time discrete LTI systems: stability, controllability, observablility ...
- Controller design for time discrete LTI systems: Digital PID, state feedback and output feeback control, Kalman filter, dead beat controller ...
- Introduction in nonlinear control systems: Hammerstein systems (Popov, describing function, phase plane method for switch system), Fuzzy control (Fuzzy set and fuzzy logic, inference mechanism) ...

ET3260 Applied software engineering

2(2-1-0-4)

Content: Software engineering, compilers, databases: introduction about software engineering; Database: models, ACCESS, SQL; phases in software engineering

ET3250 Digital communications

3(3-0-1-6)

Content:

- A/D and D/A conversion: sampling, quatization, PCM and their factors on signal quality.
- Base-band digital signal transmission
- Impact of noise/distortion/attenuation on the signal, Nyquist criteria, raised-cosine filter, matched filter
- Channel coding, line coding, bandpass digital signal transmission.
- Digital modulation: ASK, FSK, QPSK, QAM, I/Q modulation, multilevel modulation.

ET3240 Analog electronics II

3(3-0-1-6)

Content:

- Oscillator: principle, LC circuits, RC circuits, crystal circuits, frequency and amplitude stabilization
- Mixer: frequency converter (up and down), PLL
- Modulation circuit: principle, AM, FM, PSK, FSK circuits
- Detector circuits: theory, parameters, circuits
- Opamp advanced applications: functions generator, NIC, rotator, gyrator, circulator, PI, PID, integrated circuit, non linear circuits
- ADC and DAC: theory and circuits
- Power supply: AC-DC, DC-DC, AC-AC, DC-AC
- Practical electronics circuit design requirement and examples

ET3280 Propagation and antennas

2(2-1-0-4)

Content: Brief review of electromagnetic field theory: electric and magnetic dipole, elemental electric and magnetic loop, elemental combined and orthogonal dipoles. Linear radiating wire. Self and mutual impedances. Array of dipoles and apertures. Theory of radiation of surface. Antenna synthesis methods. Techniques for controlling radiation pattern, broadening bandwidth, minimizing size, producing circularly

12

polarized field. Antenna feeding methods and techniques. Radio propagation: radio wave classification, propagation in different media, reflection, refraction and scattering of radio wave. Line-of-sight propagation. Reflection of wave by ground surface and atmospheric layers. Very long distance propagation.

ET3290 Design project I

2(0-0-4-4)

Content: Students work in group of 3 to 5 students to design a software system using C, C++ or Java.

ET3300 Microprocessors

3(3-1-0-6)

Content:

- Introduction: general architecture of a microprocessor and a microprocessor system
- The Intel 8088/8086 microprocessors: Internal structure, 8086 instruction encoding, addressing modes, 8086 instruction set
- 8086 assembly: structure of a program, programming on an IBM PC, control structures, examples
- Basic memory and I/O interface for 8086: supporting ICs for 8086, interfacing 8086 with memory or I/O devices
- Interrupts: Introduction, types, Basic interrupt processing, Priority processing, 8259A programmable interrupt controller
- Direct memory access (DMA): Introduction, Basic DMA operation, The 8237 DMA controller
- CISC and RISC microprocessor design: instruction set, Addressing mode, Instruction execution cycle, design process, CISC microprocessor design. RISC microprocessor design
- Microprocessors in practice: General purpose microprocessors, Digital signal processors (DSP), Microcontroller, PSoC

ET4010 Design project II

2(0-0-4-4)

Content: Students work in group of 3 to 5 students to design a hardware system.

ET3270 Internship

2(2-0-6-4)

Content: Students make the internship at industrial companies on the fields of electronics or communications. At the end of the internship, students should submit final reports.

ET4020 Digital signal processing

3(3-0-1-6)

Content: Transforms. System and signal representation in continuous and discrete frequency region. System stability. Discrete system theory, convolution, spectral analysis; digital filter design: FIR and IIR; quantization effects. Applications to music and speech analysis.

ET4030 Digital system design and synthesis

3(3-1-0-6)

Content: Review of combinational and sequential logic design, strutural models of combinational logic, logic simulation, propagation delay, user defined primitives, behavioral models of combinational and sequential logic, synthesis of combinational and sequential logic, design and synthesis of datapath controllers, arithmetic proessors, postsynthesis design tasks.

ET4250 Communication systems

3(3-1-0-6)

Content:

- Introduction: analog and digital sources, overview of telecommunication systems in Vietnam and in the world
- AM, FM systems: wave propagation, AM systems, FM systems
- Microwave systems: concept, system construction, main technologies, environment effect, quality improve methods, practical systems
- Satellite systems: concept, fundamental knowledge, construction link budget, practical setellite system
- CDMA systems: concept, standard, practical systems
- Mobile phone system: concept, fundamental knowledge, system construction and operation, practical mobile phone system
- Radar and positioning and navigation systems: concept, system construction and operation, practical radar, positioning and navigation systems
- Television: concept, television systems, advanced technologies, practical systems
- Optical fiber: concept, physical phenomenon of light in optical fiber, light emitting devices, photodiode, system, new technologies, practical optical fiber systems
- Data network: introduction, X25, frame relay, ATM, ISDN, ADSL, NGN and other networks
- Telephone network: switch, telephone network operation

ET4040 Computer organization and architectures

3(3-0-1-6)

Content:

- Introduction: history of computers, basic components
- CPU: ALU, Pipelining, CPU Structure, CISC and RISC computers
- Computer memory organization: characteristics of memory systems, memory hierarchy, semiconductor memory (RAM, ROM, PROM, EPROM...), cache memory, virtual Memory
- Storage and peripheral devices: Magnetic storage devices. Optical disks (CD-ROM, CD-RW, DVD-ROM/RW...)
- Peripheral devices: input/Output devices, Interface standards: RS232, USB, and IEEE 1394..., System Buses
- Parallel Computer architectures: overview, Parallel computer architectures, synchronization mechanism, cache coherence, Interconnection networks

ET4050 Computer networks

3(3-0-1-6)

Content:

- Overview: OSI model vs. TCP/IP model. Classification of networks: LAN, MAN, WAN bus, star, ring, meshed
- Local area networks: performance evaluation of MAC schemes: roll call/hub polling, token ring, token bus, ALOHA, CSMA/CD/CA; layer-2 protocols: LLC, HDLC, SDLC, SLIP/PPP. Layer-2 internetworking: layer-2 addressing (MAC), learning bridge, spanning tree, source routing bridge.
- Layer-3 internetworking: IP, layer-3 addressing, ARP, NAT (Address Translation Table), subnetting and supernetting, DNS, DHCP, BOOTP. Control protocol: ICMP. Autonomous system. Routing protocols: forwarding table and routing table, table lookup algorithms – RIP, OSPF, BGP. VPN and its applications.
- UDP and TCP: TCP/UDP packet headers, TCP state machine, TCP flow and congestion control, retransmission/fast retransmission. Random Early Discard (RED). Problems when transmitting TCP over wireless networks.

ET4060 Object oriented system analysis and design

3(3-1-0-6) Content:

14

- Introduction to systems analysis and design: Introduction, system development life cycle, system development methodologies
- Introduction to object-oriented systems analysis and design with Unified Modeling Language UML: introduction, basic characteristics of object oriented systems, UML, Object oriented system analysis and design
- Planning phase: project identification, project management
- System analysis: requirements determination, functional modeling, structural modeling, behavioral modeling
- System design: evolving the analysis models into design models, models, class and method design, constraints and contracts, method specification, data management layer design, human computer interface layer design, physical architecture layer design
- System implementation: implementation, designing tests, developing documentation, installation and operations.

ET4070 Fundamentals of communication networks

3(3-1-0-6)

Content:

- Queuing theory and teletraffic: M/M/1, M/M/N, M/G/1, M/D/1. Queue networks. Reservation systems; Priority queues;
- Introduction to graph theory. Routing: flooding, random walk, hot potatoes; source routing and minimal spanning tree; shorstest-path routing with Dijktra and Bellman algorithms.
- Flow and congestion control: concept of fairness, window-based flow control, rate-based flow control
- Simulation techniques: discrete-event simulation, generating random numbers, analysis of statistic outcomes; simulation tools.

ET4080 Communication networks

3(3-0-1-6)

Content:

- Overview: communication network components
- Switching methods: circuit switching, packet switching, ATM switching
- Communication networks: ISDN, NGN
- Signaling: Introduction, SS7, IN
- Design of telecom networks

ET4240 Radio Communications

3(3-1-0-6)

Content:

- Theory of radio channel: concept of multipath transmission, channel impulse response, channel transfer function, propagation delay, frequency and time selectivity, Doppler effect, pathloss model, mathematical description of the channel, channel sounding and modeling.
- Channel equalization and interference reduction methods: intersymbol interference, interchannel interference, co-channel interference, multiple access interference, zero forcing filter, least mean square filter, minimum mean square filter.
- Radio Resource Management: frequency re-use, TDD and FDD concept, medium access control, fixed and dynamic channel assignment, ALOHA, CSMA/CD protocol.
- Radio communication system design: Receiver and transmitter structure, RF front end.
- Modulation techniques in air interface: OFDM, CDMA, applications

PH4070 Microelectronics

2(2-1-0-4) Content:

- 16
 - Introduction: history, micro electronic technology, technical standard of electronic devices, IC classification
 - Thin, thick and hybrid film technology
 - Planar technology: material preparation, diffusion, ion implantation, epitaxy, vapor deposition, thermal oxidization, metallization, optical lithography, etching, packaging
 - Processes for BJT, MOS: well, gate making, biCMOS
 - Bipolar Transistor: introduction, current amplifier, early voltage, breakdown voltage, base and collector resistor, frequency respond, switch transistor pnp
 - Diode, resistor and capacitor introduction diode schottky Diode resistor capacitor limitation
 - Bipolar IC, digital IC, analog IC, DC shifting standard
 - MOS capacitor introduction
 - MOS transistor: fundamental parameters, long channel approximation, threshold voltage, short channel effect, MOS memory, EPROM, EEPROM
 - IC MOS: design rules, NMOS inverter, CMOS inverter

ET4160 Biomedical electronics

2(2-1-0-4)

Content:

- Bioelectricity Fundamentals: Electricity of tissue, membrane transportation, ECG.
- Biomedical signal amplifier circuits: definition of biomedical signals, classification of biomedical signals, biomedical signals processing and receiving, Instrumentation amplifiers, Isolated amplifiers.
- Biomedical instrumentations: functional diagnostic equipment/system, medical imaging diagnostic equipment, therapy equipment, Labor equipment...
- Electrocardiography equipment.
- X-ray equipment: Introduction and classifications, fundamentals of X-rays, X-ray image, X-ray equipment, High- frequency X-ray equipment, fluoroscopy, and digital X-ray. Quality control and safety in X-rays.
- Medical information systems: standards for data in medical information system (HL7, DICOM). Hospital information system HIS, RIS, PACS. Telemedicine.

ET4270 Television

2(2-1-0-4)

Content:

- Fundamental of color and brightness, RGB, YUV, etc. Methods of picture analysis and synthesis in television.
- Picture, sync, frame, line, chrominance, luminance signals.
- Fundamental of color television. Standards of color TV: PAL, NTSC, SECAM.
- Block and schematic diagrams of color TV. Color CRT tube. TV transmitter station. TV studio. Nonlinear TV effects.
- CATV and sattelite TV. Digital TV systems: DVB-T, DVB-C, DVB-S, MMDS.
- Introduction on digital modulation of TV signal: QAM, COFDM. Digital Set-Top-Box.

ET4260 Multimedia

2(2-1-0-4)

Content:

- Fundamental of compression technologies: entropy, RLC, VLC, Huffman
- Audio & Video compression mechanisms and standards: MPEG-1, MPEG-2, MPEG-4, MPEG-7 Video, H.263, H.264; MPEG-1, MPEG-2 Audio, JPEG),
- Model-based Video Coding (MBVC).
- Digital Media: CDR, CDRW, DVD, Digital Camera, Video Camera, WebCam.
- Media Content Creation and Publishing.

• Multimedia networks: VoIP, SIP, RTP, RTCP, RTSP, H.323.

ET4340 VLSI design

3(3-1-0-6) Content:

ET4090 Microwave engineering

3(3-1-0-6)

Content:

- Microwave transmission line
- Impedance matching and tuning methods
- Microwave network analysis
- Microwave components and circuits: hybrid, filter, resonator, oscillator, power divider, coupler, and amplifier.

xxxxxx German for electronic and communication engineers

2(2-1-0-4) Content:

ET4180 Biomedical material

3(3-1-0-6)

Content: Protein, cell, tissue. Blood coagulation, inflamation, immunity, contamination, infection. Metal, ceramic, composite, polyme, absorable material, natural material. Biological properties of materials.

ET4900 Graduation project

6(0-0-12-12)

Content: doing research project under supervision of instructors. Reseach can be conducted at home, lab at the unversity or companies. Student should submit graduation thesis and defend the results in a committee.